If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+3q-5=0
a = 4; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·4·(-5)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{89}}{2*4}=\frac{-3-\sqrt{89}}{8} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{89}}{2*4}=\frac{-3+\sqrt{89}}{8} $
| 0.3*x=18 | | 5/7(t+7)=2/7+23 | | x+0.15x=115 | | 3x+5-x=x+3 | | (x-2)+3x+9(x-3)=5x-3x | | 5x-(x+1x)=5-2x | | .75(4m+12)+15-3(2m+6)=5(-3m+1)+25 | | 2*x-5=8+x | | (7x+6)+(6x+4)=180 | | -10x+2=-16 | | -1/2x+-3.5=6 | | y2+4 =4y | | 7x+6+6x+4=180 | | 2x-46+3x+1=180 | | 10y-5y=35 | | ^w2+2w=w+3 | | -8+9+9x=3+x+6 | | -22+2x+7x+4=180 | | w2+2w =w+3 | | (3x-2)/2=3x | | P(x)=3x+4P(-2) | | 9-x=2x-8 | | 8x^2+34x+21=(2x+7)(4x+3) | | 80+(4x-140)=180 | | 7x+6-4x=1×+3x-8 | | 8x^2+34x+21=(2x+7)(4x+21) | | -6-5x+10=19 | | 8x^2+34x+21=(2x+7)(4x-21) | | 5+3(3x-4)=9-4(2x+1) | | 1/3z+5=2/3z | | (−7.4)+v=9.11 | | 1/3z+5=-2/3z |